On Structure of Ideals in Skew Polynomial Rings over HNP Rings
نویسنده
چکیده
An elegant and strong theory on noncommutative Noetherian rings has been developed in several groundbreaking works over the second half of the 20th century following the pioneering research of Alfred Goldie in the 1960s. The theory is still an active research area in Algebra and features many important classes of rings such as matrix rings, polynomial rings, differential operator rings, group rings, Lie algebras, etc. My talk is based on some new results related to the theory of ideals in noncommutative rings and we shall be mostly concerned with Noetherian prime rings, in which case the localization is always possible at the zero ideal and the resulting localized rings is a simple Artinian overring of our original ring. After a very brief overview of some noncommutative analogues of commutative Dedekind domains, we shall turn our attention to the structure of ideals in skew polynomial rings over hereditary Noetherian prime rings (or, HNP-rings, for short). The majority of the new results to be presented appear in [1].
منابع مشابه
On annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملNilpotent Elements in Skew Polynomial Rings
Letbe a ring with an endomorphism and an -derivationAntoine studied the structure of the set of nilpotent elements in Armendariz rings and introduced nil-Armendariz rings. In this paper we introduce and investigate the notion of nil--compatible rings. The class of nil--compatible rings are extended through various ring extensions and many classes of nil--compatible rings are constructed. We al...
متن کامل(θ, Δ)-codes with Skew Polynomial Rings
In this paper we generalize coding theory of cyclic codes over finite fields to skew polynomial rings over finite rings. Codes that are principal ideals in quotient rings of skew polynomial rings by two sided ideals are studied. Next we consider skew codes of endomorphism type and derivation type. And we give some examples.
متن کاملOn constant products of elements in skew polynomial rings
Let $R$ be a reversible ring which is $alpha$-compatible for an endomorphism $alpha$ of $R$ and $f(X)=a_0+a_1X+cdots+a_nX^n$ be a nonzero skew polynomial in $R[X;alpha]$. It is proved that if there exists a nonzero skew polynomial $g(X)=b_0+b_1X+cdots+b_mX^m$ in $R[X;alpha]$ such that $g(X)f(X)=c$ is a constant in $R$, then $b_0a_0=c$ and there exist nonzero elements $a$ and $r$ in $R$ such tha...
متن کاملMathematical Aspects of (θ, δ)-Codes with Skew Polynomial Rings
In this paper we generalize coding theory of cyclic codes over finite fields to skew polynomial rings over finite rings. Codes that are principal ideals in quotient rings of skew polynomial rings by two sided ideals are studied. Next we consider skew codes of endomorphism type and derivation type. And we give some examples. Mathematics Subject Classification: Primary 94B60; Secondary 94B15, 16D25
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016